Polygonization and anomalous graphene interlayer spacing of multi-walled carbon nanofibers

نویسندگان

  • Mina Yoon
  • Jane Howe
  • Gary Tibbetts
  • Gyula Eres
  • Zhenyu Zhang
چکیده

The graphene interlayer spacing in pure graphite is known to have a minimum value of dmin=0.3354 nm, while defective graphites typically have larger interlayer spacings. Using x-ray diffraction, we find that the graphene interlayer spacing in multi-walled carbon nanofibers heat treated above 2800 K is distinctly smaller than dmin. To explain this unusual observation, we investigate the structural properties of carbon nanotubes using a multiscale approach rooted in extensive first-principles calculations, specifically allowing the nanotube cross sections to polygonize. We show that, whereas normal nanotubes are favored energetically at low temperatures, the configuration entropy associated with Stone-Wales defect creation at high temperatures makes the polygonal shape of large nanotubes or nanofibers thermodynamically stable, accompanied by a reduction in the graphene interlayer spacing. These unique predictions are confirmed in further experimental tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying individual single-walled and double-walled carbon nanotubes by atomic force microscopy.

We show that the number of concentric graphene cylinders forming a carbon nanotube can be found by squeezing the tube between an atomic force microscope tip and a silicon substrate. The compressed height of a single-walled nanotube (double-walled nanotube) is approximately two (four) times the interlayer spacing of graphite. Measured compression forces are consistent with the predicted bending ...

متن کامل

Graphenes prepared from multi-walled carbon nanotubes and stacked graphene nanofibers for detection of 2,4,6-trinitrotoluene (TNT) in seawater.

The study on explosive materials is paramount due to the potential hazards to national security and health. When disposed of, explosives can cause seawater pollution. The detection of 2,4,6-trinitrotoluene (TNT) in seawater has been examined on two different forms of graphene, mainly graphene prepared from the unzipping of multi-walled carbon nanotubes (MWCNTs) and from the exfoliation of stack...

متن کامل

Low-Frequency Noise Spectroscopy at Nanoscale: Carbon Nanotube Materials and Devices

This section presents brief description of peculiarities of carbon materials and advantages of noise spectsroscopy for the study of unique carbon nanotubes (CNT) materials and devices. In general, carbon is truly an extraordinary material with physical structures spanning three dimensional (3D) graphite, two-dimensional (2D) graphene and zero-dimensional (0D) buckyballs or buckminster fullerine...

متن کامل

Dynamic Instability Analysis of Embedded Multi-walled Carbon Nanotubes under Combined Static and Periodic Axial Loads using Floquet–Lyapunov Theory

The dynamic instability of single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT) and triple-walled carbon nanotubes (TWCNT) embedded in an elastic medium under combined static and periodic axial loads are investigated using Floquet–Lyapunov theory. An elastic multiple-beam model is utilized where the nested slender nanotubes are coupled with each other through the van d...

متن کامل

Buckling Analysis of a Five-walled CNT with Nonlocal Theory

A continuum model is presented to study vdW interaction on buckling analysis of multi-walled walled carbon nanotube. In previous studies, only the vdW interaction between adjacent two layers was considered and the vdW interaction between the other two layers was neglected. The results show that the vdW interaction cofficients are dependent on the change of interlayer spacing and the radii of tu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007